Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the planes $ \overrightarrow{r}.(2\hat{i}-\lambda \hat{j}+3\hat{k})=0 $ and $ \overrightarrow{r}.(\lambda \hat{i}+5\hat{j}-\hat{k})=0 $ are perpendicular to each other, then the value of $ {{\lambda }^{2}}+\lambda $ is

KEAMKEAM 2008Three Dimensional Geometry

Solution:

Since, given planes $ \overrightarrow{r}.(2\hat{i}-\lambda \hat{j}+3\hat{k})=0 $ and $ \overrightarrow{r}.(\lambda \hat{i}+5\hat{j}-\hat{k})=5 $
are perpendicular.
$ \therefore $ $ 2(\lambda )-\lambda (5)+3(-1)=0 $
$ \Rightarrow $ $ -3\lambda -3=0\Rightarrow \lambda =-1 $
$ \therefore $ $ {{\lambda }^{2}}+\lambda ={{(-1)}^{2}}-1 $
$=0 $