Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the parabolas y2 = 4x and x2 = 32y intersect at (16, 8) at an angle θ , then θ equals to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the parabolas $ y^2 = 4x $ and $ x^2 = 32y $ intersect at $ (16, 8) $ at an angle $ \theta $ , then $ \theta $ equals to
AMU
AMU 2011
A
$ tan^{-1} 5/3 $
B
$ tan^{-1} 4/5 $
C
$ tan^{-1} 3/5 $
D
$ \pi/2 $
Solution:
Given curves are
$y^2 = 4x$
$\Rightarrow 2y \frac{dy}{dx} = 4 $
$\Rightarrow \left(\frac{dy}{dx}\right)_{\left(16, 8\right)} = \frac{4}{16} $
$\Rightarrow \left(\frac{dy}{dx}\right)_{\left(16, 8\right)} \frac{1}{4} = m_{1} $ (say)
and $x^{2} = 32y $
$ \Rightarrow 2x = 32 \frac{dy}{dx} $
$ \Rightarrow \left(\frac{dy}{dx}\right)_{\left(16, 8\right)} = \frac{2\times16}{32} $
$\Rightarrow \left(\frac{dy}{dx}\right)_{\left(16,8\right)} = 1 = m_{2}$(say)
$ \therefore $ Angle between them, $\theta = tan^{-1}\left(\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right) $
$ = tan^{-1}\left(\frac{1-\frac{1}{4}}{1+1\times\frac{1}{4}}\right) $
$= tan^{-1}\left(\frac{\frac{3}{4}}{\frac{5}{4}}\right)$
$ = tan^{-1}\left(\frac{3}{5}\right)$