Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the parabola $y=\alpha x^{2}-6 x+\beta$ passes through the point $(0,2)$ and has its tangent at $x=\frac{3}{2}$ parallel to $x$ axis, then

KCETKCET 2021Conic Sections

Solution:

$y=\alpha x^{2}-6 x+\beta$ passes through $(0,2)$
$2=\beta$
$\frac{d y}{d x}=2 \alpha x-6$
$\left(\frac{d y}{d x}\right)_{x=\frac{3}{2}}=0$
$2 \alpha\left(\frac{3}{2}\right)-6=0$
$3 \alpha=6$
$\alpha=2$