Thank you for reporting, we will resolve it shortly
Q.
If the parabola $y=(a-b) x^{2}+(b-c) x+(c-a)$ touches the $x$-axis then the line $a x+b y+c=0$
Conic Sections
Solution:
Solving equation of parabola with $x$-axis $(y=0)$, we get
$(a-b) x^{2}+(b-c) x+(c-a)=0$
which should have two equal values of $x$, as $x$-axis touches the parabola.
$\therefore (b-c)^{2}-4(a-b)(c-a)=0$
$\Rightarrow (b+c-2 a)^{2}=0$
$\Rightarrow (b+c-2 a)^{2}=0 $
$\Rightarrow-2 a+b+c=0$
Thus, $a x+b y+c=0$ always passes through $(-2,1)$.