Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the origin is the centroid of the triangle with vertices $A(3a, 4, -5)$, $B(-2, 4b, 6)$ and $C(6, 10, c)$, then find the value of $a$, $b$, $c$.

Introduction to Three Dimensional Geometry

Solution:

Here $A(3a, 4, -5)$, $B(-2, 4b, 6)$ and $C(6,10, c)$ be the three vertices of $\Delta ABC$, then coordinates of centroid are
$\left[\frac{3a-2+6}{3}, \frac{4+4b+10}{3}, \frac{-5+6+c}{3}\right]$.
But it is given that coordinates of centroid are $\left(0,0,0\right)$.
$\therefore \frac{3a-2+6}{3} = 0$
$\Rightarrow 3a=-4$
$\Rightarrow a = -\frac{4}{3}$
$\frac{4+4b+10}{3}=0$
$\Rightarrow 4b =-14$
$\Rightarrow b=-\frac{7}{2}$
$\frac{-5+6+c}{3}=0$
$\Rightarrow c=-1$