Thank you for reporting, we will resolve it shortly
Q.
If the middle term in the binomial expansion of (1x+xsinx)10 is 638, then find the value of 6sin2x+sinx−2
Binomial Theorem
Solution:
Here, n=10, which is even.
Middle term =(102+1)th term =6th term T6=10C5(1x)5(xsinx)5 ⇒638=252(sinx)5 ⇒(sinx)5=132 ⇒(sinx)5=(12)5 ⇒sinx=12 ⇒2sinx−1=0 ⇒6sin2x+sinx−2 =(2sinx−1)(3sinx+2) =0