Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the maximum value of $a$, for which the function $f _{ a }( x )=\tan ^{-1} 2 x -3 ax +7$ is non-decreasing in $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$, is $\overline{ a }$, then $f _{\bar{a}}\left(\frac{\pi}{8}\right)$ is equal to

JEE MainJEE Main 2022Application of Derivatives

Solution:

$f_a(x)=\tan ^{-1} 2 x-3 a x+7$
$f _{ a }^{\prime}( x )=\frac{2}{1+4 x ^2}-3 a \geq 0 $
$a \leq\left(\frac{2}{3\left(1+4 x ^2\right)}\right)_{\text {min. }} \text { at } x =\pm \frac{\pi}{6} $
$a _{\max }=\overline{ a }=\frac{6}{9+\pi^2} $
$f _{ a }\left(\frac{\pi}{8}\right)=\tan ^{-1} \frac{\pi}{4}-3 \frac{6}{9+\pi^2} \frac{\pi}{8}+7=\tan ^{-1} \frac{\pi}{4}-\frac{9 \pi}{4\left(\pi^2+9\right)}+7$