Q.
If the maximum and minimum values of the determinant
$\begin{vmatrix} 1+\text{sin}^{2}x & \text{cos}^{2}x & \text{sin 2x} \\ \text{sin}^{2}x & 1+\text{cos}^{2}\text{x} & \text{sin 2x} \\ \text{sin}^{2}\text{x} & \text{cos}^{2}\text{x} & 1+\text{sin 2x} \end{vmatrix}$ are $\alpha $ and $\beta $ respectively, then $\alpha + 2 \beta $ is equal to
NTA AbhyasNTA Abhyas 2020Matrices
Solution: