Q.
If the maximum and minimum values of the determinant
$\begin{vmatrix} 1+\sin^{2}x & \cos^{2}x & \sin2x \\ \sin^{2}x & 1+\cos^{2}x & \sin2x \\ \sin^{2}x & \cos^{2}x & 1+\sin2x \end{vmatrix}$ are $\alpha $ and $\beta $ , respectively, then $\alpha + 2 \beta $ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: