Thank you for reporting, we will resolve it shortly
Q.
If the matrix $A = \begin{bmatrix}5&2&x\\ y&2&-3\\ 4&t&-7\end{bmatrix}$ is a symmetric matrix, then find the value of $x, y$ and $t$ respectively,
Matrices
Solution:
$A$ is a symmetric matrix $\therefore A = A^T $
$ \Rightarrow \begin{bmatrix}5&2&x\\ y&2&-3\\ 4&t&-7\end{bmatrix} = \begin{bmatrix}5&y&4\\ 2&2&t\\ x&-3&-7\end{bmatrix}$
On comparing, we get
$\Rightarrow y=2, x = 4, t = -3$