Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the locus of the foot of the perpendicular drawn from centre upon any tangent to the ellipse $\frac{x^{2}}{40}+\frac{y^{2}}{10}=1$ is $\left(x^{2} + y^{2}\right)^{2}=ax^{2}+by^{2}$ , then $\left(a - b\right)$ is equal to

NTA AbhyasNTA Abhyas 2022

Solution:

Solution
Slope of $OP$ $=\frac{k}{h}\Rightarrow $ slope of the tangent is $\frac{- h}{k}$
Hence, the equation of tangent $PQ$ is $\frac{\left(\right. y - k \left.\right)}{x - h}=\frac{- h}{k}$
$\Rightarrow $ $y=-\frac{h}{k}x+\frac{h^{2} + k^{2}}{k}$
$\Rightarrow \left(\frac{h^{2} + k^{2}}{k}\right)^{2}=40\left(\frac{- h}{k}\right)^{2}+10$ condition of tangency is $c^{2}=a^{2}m^{2}+b^{2} $
$\Rightarrow \left(x^{2} + y^{2}\right)^{2}=40x^{2}+10y^{2}$
$\Rightarrow a-b=30$