Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the lines $\frac{2x-1}{2}=\frac{3-y}{1}=\frac{z-1}{3}and \frac{x+3}{2}=\frac{z+1}{p}=\frac{y+2}{5}$ are perpendicular to each other, then $p$ is equal to

KEAMKEAM 2013Three Dimensional Geometry

Solution:

Given lines are $\frac{2 x-1}{2}=\frac{3-y}{1}=\frac{z-1}{3}$
$\Rightarrow \, \frac{x-1 / 2}{1}=\frac{y-3}{-1}=\frac{z-1}{3}\,\,\,\,\,\,\dots(i)$
and $ \frac{x+3}{2}=\frac{z+1}{p}=\frac{y+2}{5}\,\,\,\,\,\,\,\dots(ii)$
Since, both lines are perpendicular.
$\therefore \, (1)(2)+(-1)(5)+(3)(p)=0$
(by perpendicularity condition)
$\Rightarrow \,2-5+3 p=0$
$ \Rightarrow \,3 p=3$
$\therefore \, p=1$