Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points $(2, -3)$ and $(4, -5)$, then $(a, b)$ is

Straight Lines

Solution:

Given line is $\frac{x}{a}+\frac{y}{b}=1\quad\ldots\left(i\right)$
Now, $\left(i\right)$ passes through $\left(2, -3\right)$ and $\left(4, -5\right)$
$\therefore \left(2, - 3\right)$ and $\left(4, - 5\right)$ satisfies it
So, $\frac{2}{a}-\frac{3}{b}=1\quad\ldots\left(ii\right)$ and
$\frac{4}{a}-\frac{5}{b}=1\quad\ldots\left(iii\right)$
On solving $\left(ii\right)$ and $\left(iii\right)$,
we get $a = -1$, $b = -1$