Q.
If the letters of the word ASSASSINATION are arranged at random. Find the probability that
(i) Four $S's$ come consecutively in the word
(ii) Two $I's$ and two $N's$ come together
(iii) All $A's$ are not coming together
(iv) No two $A's$ are coming together
(i)
(ii)
(iii)
(iv)
(a)$\,\,\,\,$
$\frac{2}{143}\,\,\,\,$
$\frac{2}{143}\,\,\,\,$
$\frac{25}{26}\,\,\,\,$
$\frac{15}{26}\,\,\,\,$
(b)
$\frac{25}{26}$
$\frac{15}{26}$
$\frac{2}{143}$
$\frac{2}{143}$
(c)
$\frac{15}{26}$
$\frac{25}{26}$
$\frac{2}{143}$
$\frac{2}{143}$
(d)
$\frac{2}{143}$
$\frac{25}{26}$
$\frac{2}{143}$
$\frac{15}{26}$
(i) | (ii) | (iii) | (iv) | |
---|---|---|---|---|
(a)$\,\,\,\,$ | $\frac{2}{143}\,\,\,\,$ | $\frac{2}{143}\,\,\,\,$ | $\frac{25}{26}\,\,\,\,$ | $\frac{15}{26}\,\,\,\,$ |
(b) | $\frac{25}{26}$ | $\frac{15}{26}$ | $\frac{2}{143}$ | $\frac{2}{143}$ |
(c) | $\frac{15}{26}$ | $\frac{25}{26}$ | $\frac{2}{143}$ | $\frac{2}{143}$ |
(d) | $\frac{2}{143}$ | $\frac{25}{26}$ | $\frac{2}{143}$ | $\frac{15}{26}$ |
Probability
Solution: