Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the letters of the word ASSASSINATION are arranged at random. Find the probability that
(i) Four $S's$ come consecutively in the word
(ii) Two $I's$ and two $N's$ come together
(iii) All $A's$ are not coming together
(iv) No two $A's$ are coming together
(i) (ii) (iii) (iv)
(a)$\,\,\,\,$ $\frac{2}{143}\,\,\,\,$ $\frac{2}{143}\,\,\,\,$ $\frac{25}{26}\,\,\,\,$ $\frac{15}{26}\,\,\,\,$
(b) $\frac{25}{26}$ $\frac{15}{26}$ $\frac{2}{143}$ $\frac{2}{143}$
(c) $\frac{15}{26}$ $\frac{25}{26}$ $\frac{2}{143}$ $\frac{2}{143}$
(d) $\frac{2}{143}$ $\frac{25}{26}$ $\frac{2}{143}$ $\frac{15}{26}$

Probability

Solution:

Total number of letters in the word ASSASSINATION are $13$.
Out of which $3A's$, $4S's$, $2I's$, $2N's$, $1T's$ and $1\, O's$.
(i) If four $S’s$ com e consecutively, then we consider these $4S’s$ as $1$ group.
image
$\therefore $ Number of words when all $S’s$ are together $= \frac{10!}{3!2!2!}$
Also, total number of words using letter of the word
ASSASSINATION $= \frac{13!}{3!4!2!2!}$
$\therefore $ Required probability $= \frac{10! \times 3! \times 4! \times 2! \times 2!}{3!2!2! \times 13!}$
$= \frac{10! \times 4!}{13!}=\frac{4!}{13 \times 12 \times11}$
$= \frac{24}{1716} = \frac{2}{143}$
(ii) If $2I’s$ and $2N’s$ come together, then there are $10$ alphabets.
$\therefore $ Number of words when $2I’s$ and $2N's$ come together
$= \frac{10!}{3!4!}\times \frac{4!}{2!2!}$
$\therefore $ Required probability $= \frac{\frac{10!4!}{3!4!2!2!}}{\frac{13!}{3!4!2!2!}}$
$= \frac{4!10!}{13!}=\frac{2}{143}$
(iii) Number of words when all $A's$ come together $= \frac{11!}{4!2!2!}$
$\therefore $ Probability when all $A's$ come together
$= \frac{\frac{11!}{4!2!2!}}{\frac{13!}{4!3!2!2!}}=\frac{11! \times 3!}{13!}$
$= \frac{6}{13\times 12} = \frac{1}{26}$
$\therefore $ Required probability when all $A's$ does not come together $= 1-\frac{1}{26}=\frac{25}{26}$
(iv) If no two $A's$ are coming together, then first we arrange the letters except $A's$
image
All the letters except $A's$ are arranged in $= \frac{10!}{4!2!2!}$ ways
There are $11$ vacant places between these letters.
Therefore, $3A's$ can be placed in $11$ places in $^{11}C_{3} = \frac{11!}{3!8!}$ ways
$\therefore $ Total number of words when no two A's are together
$= \frac{11!}{3!8!}\times\frac{10!}{4!2!2!}$
$\therefore $ Required probability $= \frac{11! \times 10!}{3!8!4!2!2!}\times \frac{4!3!2!2!}{13!}$
$= \frac{10!}{8! \times 13\times 12}= \frac{10\times 9}{13\times 12}$
$= \frac{15}{26}$