Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the length of the major axis of an ellipse is $ \frac{17}{8} $ times the length of the minor axis, then the eccentricity of the ellipse is

KEAMKEAM 2010

Solution:

Given, $ a=\frac{17}{8}b $ $ \because $ $ {{b}^{2}}={{a}^{2}}(1-{{e}^{2}}) $
$ \Rightarrow $ $ {{b}^{2}}={{\left( \frac{17}{8}b \right)}^{2}}(1-{{e}^{2}}) $
$ \Rightarrow $ $ {{b}^{2}}=\frac{289}{64}{{b}^{2}}(1-{{e}^{2}}) $
$ \Rightarrow $ $ \frac{64}{289}=1-{{e}^{2}} $
$ \Rightarrow $ $ {{e}^{2}}=1-\frac{64}{286}=\frac{289-64}{289} $
$ \Rightarrow $ $ {{e}^{2}}=\frac{225}{289} $
$ \Rightarrow $ $ e=\frac{15}{17} $