Thank you for reporting, we will resolve it shortly
Q.
If the harmonic mean between $a$ and $b$ be $H$, then the value of $\frac{1}{H-a}+\frac{1}{H-b}$ is
Sequences and Series
Solution:
Putting $H=\frac{2 a b}{a+b},$,
we have $\frac{1}{H-a}+\frac{1}{H-b}$
$=\frac{1}{\left(\frac{2 a b}{a+b}-a\right)}+\frac{1}{\left(\frac{2 a b}{a+b}-b\right)}=\frac{a+b}{a b-a^{2}}+\frac{a+b}{a b-b^{2}}$
$=\left(\frac{a+b}{b-a}\right)\left(\frac{1}{a}-\frac{1}{b}\right)$
$=\left(\frac{a+b}{b-a}\right)\left(\frac{b-a}{a b}\right)$
$=\frac{a+b}{a b}=\frac{1}{a}+\frac{1}{b}$