Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the function $f\left(x\right)=x^{3}-3ax$ has a local minimum at $x=\lambda \, \left(\lambda \geq 4\right)$ and $a\in \left[10,18\right]$ , then the sum of all the possible integral values of $a$ is

NTA AbhyasNTA Abhyas 2020Application of Derivatives

Solution:

$f^{'} \left(x\right) = 3 x^{2} - 3 a$
$=3\left(x - \sqrt{a}\right)\left(x + \sqrt{a}\right)$
Solution
$\therefore f\left(x\right)$ has a local minimum at $x=\sqrt{a}$
$\Rightarrow \sqrt{a}\geq 4$
$\Rightarrow a\geq 16$
$\therefore $ $‘a’$ can be $16,17,18$