Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the function $f(x)=\begin{cases} x+a\sqrt{2}\sin x & 0\leq x < \frac{\pi }{4} \\ 2x\cot x+b & \frac{\pi }{4}\leq x\leq \frac{\pi }{2} \\ a \cos 2x-b \sin x & \frac{\pi }{4} < x\leq \pi \end{cases}$ is continuous in $\left[0 , \pi \right]$ , then the values of $a$ and $b$ respectively are

NTA AbhyasNTA Abhyas 2022

Solution:

$\because f(x)$ is continuous in $[0, \pi]$ so it is continuous at $x=\frac{\pi}{4}$ and $x=\frac{\pi}{2}$
$\therefore \displaystyle\lim _{x \rightarrow\left(\frac{\pi}{4}\right)^{-}} f(x)=\displaystyle\lim _{x \rightarrow\left(\frac{\pi}{4}\right)^{+}} f(x)$
$\Rightarrow \frac{\pi}{4}+a=\frac{\pi}{2}+b \ldots(1)$
and $\displaystyle\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} f(x)=\displaystyle\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} f(x)$
$\Rightarrow 0+b=-a-b \ldots(2)$
By solving (1) and (2), we get,
$a=\frac{\pi}{6}, b=-\frac{\pi}{12}$