Q. If the function $f(x) = \begin{cases} a | \pi - x | + 1 , x \le 5 \\ b | x - \pi | + 3 , x > 5 \end{cases} $ is continuous at x = 5, then the value of a - b is :-
Solution:
$a\left|\pi-5\right|+1 = b \left|5-\pi\right| +3$
$ a\left(5-\pi\right)+1 =b\left(5-\pi\right)+3 $
$ \left(a -b\right)\left(5-\pi\right) = 2 $
$ a-b = \frac{2}{5-\pi}$
