Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the function $ \frac{7}{2} $ defined on [1, 3] satisfies the Rolle's theorem for $ \frac{9}{2} $ then

JamiaJamia 2015

Solution:

Since, $ -\text{ 326}.\text{4 kJ mo}{{\text{l}}^{\text{-1}}} $ satisfies conditions of Rolle's theorem on [1,3]. $ -\text{ 32}.\text{64 kJ mo}{{\text{l}}^{\text{-1}}} $ $ -\text{ 3264}0\text{ kJ mo}{{\text{l}}^{\text{-1}}} $ $ {{H}_{2}} $ $ C{{l}_{2}} $ $ \text{HCl} $ $ \text{231 kJ mo}{{\text{l}}^{\text{-1}}} $ $ \text{HCl} $ $ \text{93 kJ mo}{{\text{l}}^{-\text{1}}} $ As $ -\text{ 245 kJ mo}{{\text{l}}^{-\text{1}}} $ is independent of b Therefore, $ a=11 $ and $ -\text{ 93 kJ mo}{{\text{l}}^{-\text{1}}} $