Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the force is given by $ F = at + bt^2$ with $t$ as time. The dimensions of $a$ and $b$ are

BITSATBITSAT 2012

Solution:

Dimension of $at =$ Dimension of $F$
$\left[at\right] = \left[F\right]$
$\Rightarrow \left[a\right] = \left[\frac{F}{t}\right] $
$\left[b\right] = \left[\frac{MLT^{-2}}{T}\right]$
$ \Rightarrow \left[a\right] = \left[MLT^{-3}\right] $
Dimension of $bt^2$ = Dimension of $F$
$ \left[bt^{2}\right] =\left[F\right] \left[b\right] =\left[\frac{F}{t^{2}}\right] $
$ \left[b\right] = \left[\frac{MLT^{-4}}{T^{2}}\right] $
$\Rightarrow \left[b\right] = \left[MLT^{-4}\right]$