Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the foot of perpendicular drawn from the point $\left(2,5 , 1\right)$ on a line passing through $\left(\alpha , 2 \alpha , 5\right)$ is $\left(\frac{1}{5} , \frac{2}{5} , \frac{3}{5}\right)$ , then $\alpha $ is equal to

NTA AbhyasNTA Abhyas 2020

Solution:

Solution
From diagram $\overset{ \rightarrow }{P Q}\cdot \overset{ \rightarrow }{Q R}=0$
$\left[\left(2 - \frac{1}{5}\right) \hat{i} + \left(5 - \frac{2}{5}\right) \hat{j} + \left(1 - \frac{3}{5}\right) \hat{k}\right]\cdot \left[\left(\alpha - \frac{1}{5}\right) \hat{i} + \left(2 \alpha - \frac{2}{5}\right) \hat{j} + \left(5 - \frac{3}{5}\right) \hat{k}\right]=0$
$\Rightarrow \frac{9 \alpha }{5}-\frac{9}{25}+\frac{46 \alpha }{5}-\frac{46}{25}+\frac{44}{25}=0$
$\Rightarrow \alpha =\frac{1}{25}$