Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the equation $ {{x}^{2}}-(2+m)x+({{m}^{2}}-4m+4)=0 $ in $ x $ has equal roots, then the values of m are

KEAMKEAM 2011Complex Numbers and Quadratic Equations

Solution:

$ {{x}^{2}}-(2+m)x+({{m}^{2}}-4m+4)=0 $ Since, $ x $ has equal roots, then $ {{B}^{2}}-4AC=0 $ $ {{(m+2)}^{2}}-4({{m}^{2}}-4m+4)=0 $
$ \Rightarrow $ $ ({{m}^{2}}+4+4m)-(4{{m}^{2}}-16m+16)=0 $
$ \Rightarrow $ $ -3{{m}^{2}}+20m-12=0 $
$ \Rightarrow $ $ 3{{m}^{2}}-20m+12=0 $
$ \Rightarrow $ $ 3{{m}^{2}}-18m-2m+12=0 $
$ \Rightarrow $ $ 3m(m-6)-2(m-6)=0 $
$ \Rightarrow $ $ (m-6)(3m-2)=0 $
$ \Rightarrow $ $ m=\frac{2}{3},6 $