Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is :
JEE Main
JEE Main 2015
Conic Sections
A
$\frac{1}{2}$
29%
B
$\frac{2\sqrt{2}-1}{2}$
20%
C
$\sqrt{2}-1$
39%
D
$\frac{\sqrt{2}-1}{2}$
11%
Solution:
$S_{1} S_{2}=$ distance between foci
$=2ae=\frac{1}{2}\left(\right.$ length of latus rectum $\left.=\frac{2 b^{2}}{a}\right)$
$\therefore 2ae=\frac{1}{2}\left(\frac{2 b^{2}}{a}\right)$
$\Rightarrow 2 a^{2} e=b^{2}$
$\Rightarrow e=\frac{b^{2}}{2 a^{2}}=\frac{a^{2}\left(1-e^{2}\right)}{2 a^{2}}=\frac{1-e^{2}}{2}$
$\Rightarrow e^{2}+2 e-1=0$
$\Rightarrow e=\frac{-2+\sqrt{4+4}}{2}=\frac{\sqrt{8-2}}{2}=\sqrt{2}-1$