Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is :

JEE MainJEE Main 2015Conic Sections

Solution:

$S_{1} S_{2}=$ distance between foci
$=2ae=\frac{1}{2}\left(\right.$ length of latus rectum $\left.=\frac{2 b^{2}}{a}\right)$
$\therefore 2ae=\frac{1}{2}\left(\frac{2 b^{2}}{a}\right)$
$\Rightarrow 2 a^{2} e=b^{2}$
$\Rightarrow e=\frac{b^{2}}{2 a^{2}}=\frac{a^{2}\left(1-e^{2}\right)}{2 a^{2}}=\frac{1-e^{2}}{2}$
$\Rightarrow e^{2}+2 e-1=0$
$\Rightarrow e=\frac{-2+\sqrt{4+4}}{2}=\frac{\sqrt{8-2}}{2}=\sqrt{2}-1$