Q.
If the conics whose equations are
$S_{1}:\left(\sin ^{2} \theta\right) x^{2}+(2 h \tan \theta) x y+\left(\cos ^{2} \theta\right) y^{2} $
$+32 x+16 y+19=0 $
$S_{2}:\left(\cos ^{2} \theta\right) x^{2}-\left(2 h^{\prime} \cot \theta\right) x y+\left(\sin ^{2} \theta\right) y^{2} $
$+16 x+32 y+19=0$
intersect in four concyclic points, where $\theta \in\left(0, \frac{\pi}{2}\right)$, then
the incorrect statement(s) can be
Conic Sections
Solution: