Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the coefficient of kinetic friction be $\mu_{k}$ in above question then the initial acceleration of the crate will be :

Laws of Motion

Solution:

$F \cos \theta-\mu_{k} N=m a$
$ F \cos \theta-\mu_{k}(m g-F \sin \theta)=m a $
$\Rightarrow F \cos \theta-\mu_{k} m g+\mu_{k} F \sin \theta=m a$
$\Rightarrow F\left(\cos \theta+\mu_{k} \sin \theta\right)-\mu_{k} m g=m a $
$\Rightarrow a=\left[\left(\frac{F}{m g}\right)\left(\cos \theta+\mu_{k} \sin \theta\right)-\mu_{k}\right] g$