Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the area of the polygon whose vertices are the solutions (in the complex plane) of the equation $x^7+x^6+x^5+x^4+x^3+x^2+x+1=0$, can be expressed in the simplest form as $\frac{a \sqrt{b}+c}{d}$, find the value of $(a+b+c+d)$

Complex Numbers and Quadratic Equations

Solution:

$(x-1)\left(x^7+x^6+\ldots \ldots . .+x-1\right)=0$
$x =\cos \frac{2 m \pi}{8}+i \sin \frac{2 m \pi}{8}, m =1,2 \ldots \ldots .7$
hence solutionare $e ^{i \frac{2 \pi}{8}}, e ^{i \frac{4 \pi}{8}}, e ^{i \frac{6 \pi}{8}}, e ^{i \frac{8 \pi}{8}}, e ^{i \frac{10 \pi}{8}}, e ^{i \frac{12 \pi}{8}}, e ^{i \frac{14 \pi}{8}}$
hence polygon $S _1 S _2 \ldots \ldots S _7$ is as shown
image
$\text { Area }=6 \times \frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot 1 \cdot 1=\frac{3 \sqrt{2}}{2}+\frac{1}{2} $
$\text { Area }=\frac{3 \sqrt{2}+1}{2} \equiv \frac{a \sqrt{b}+c}{d} $
$\Rightarrow \quad a+b+c+d=3+2+1+2=8 $