Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the angle between the vectors
$2 \alpha^{2} \hat{ i }+4 \alpha \hat{ j }+\hat{ k }$ and $7 \hat{ i }-2 \hat{ j }+\alpha \hat{ k }$ is obtuse, then

TS EAMCET 2019

Solution:

Given vectors
$2 \alpha^{2} \hat{ i }+4 \alpha \hat{ j }+\hat{ k } \text { and } 7 \hat{ i }-2 \hat{ j }+\alpha \hat{ k }$
Angle between these vector are obtuse $\therefore \cos \theta<0$
$ \frac{\left(2 \alpha^{2} \hat{ i }+4 \alpha \hat{ j }+\hat{ k }\right)(7 \hat{ i }-2 \hat{ j }+\alpha \hat{ k })}{\left|2 \alpha^{2} \hat{ i }+4 \alpha \hat{ j }+\hat{ k }\right||7 \hat{ i }-2 \hat{ j }+\alpha \hat{ k }|} $
$ \Rightarrow 14 \alpha^{2}-8 \alpha+\alpha<0 \Rightarrow 14 \alpha^{2}-7 \alpha<0 $
$ \Rightarrow 7 \alpha(2 \alpha-1) < 0 \Rightarrow \alpha \in\left(0, \frac{1}{2}\right) $
$ \therefore 0 < \alpha < \frac{1}{2}$