Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
If temperature of a pendulum clock changes from θ1 to θ2, the fractional change in the period of a pendulum clock is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If temperature of a pendulum clock changes from $\theta_{1}$ to $\theta_{2}$, the fractional change in the period of a pendulum clock is :
Thermal Properties of Matter
A
$\frac{1}{2} \alpha\left(\theta_{2}-\theta_{1}\right)^{2}$
B
$2 \alpha\left(\theta_{2}-\theta_{1}\right)$
C
$\frac{1}{2} \alpha\left(\theta_{2}-\theta_{1}\right)$
D
$2 \alpha\left(\theta_{2}-\theta_{1}\right)^{2}$
Solution:
We use
$T=2 \pi \sqrt{\frac{l}{g}}$
$\frac{T^{\prime}}{T}=\sqrt{\frac{l^{\prime}}{l}}=\sqrt{\frac{l+\Delta l}{l}}$
$=\sqrt{\frac{l+\alpha l \Delta \theta}{l}}$
$\Rightarrow \frac{T^{\prime}}{T} =(1+\alpha \Delta \theta)^{1 / 2}$
$\Rightarrow T' =T(1+r \wedge \theta)^{1 / 2}$
As $\alpha$ is small,
$\Rightarrow T^{\prime}=T\left[1+\frac{1}{2} \alpha \Delta \theta\right]$
$\Rightarrow \Delta T=T^{\prime}-T=\frac{1}{2} \alpha T \Delta \theta$
Fraction change in time period,
$\frac{\Delta T}{T} =\frac{1}{2} \alpha \Delta \theta$
$=\frac{1}{2} \alpha\left(\theta_{2}-\theta_{1}\right)$