Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If temperature of a pendulum clock changes from $\theta_{1}$ to $\theta_{2}$, the fractional change in the period of a pendulum clock is :

Thermal Properties of Matter

Solution:

We use
$T=2 \pi \sqrt{\frac{l}{g}}$
$\frac{T^{\prime}}{T}=\sqrt{\frac{l^{\prime}}{l}}=\sqrt{\frac{l+\Delta l}{l}}$
$=\sqrt{\frac{l+\alpha l \Delta \theta}{l}}$
$\Rightarrow \frac{T^{\prime}}{T} =(1+\alpha \Delta \theta)^{1 / 2}$
$\Rightarrow T' =T(1+r \wedge \theta)^{1 / 2}$
As $\alpha$ is small,
$\Rightarrow T^{\prime}=T\left[1+\frac{1}{2} \alpha \Delta \theta\right]$
$\Rightarrow \Delta T=T^{\prime}-T=\frac{1}{2} \alpha T \Delta \theta$
Fraction change in time period,
$\frac{\Delta T}{T} =\frac{1}{2} \alpha \Delta \theta$
$=\frac{1}{2} \alpha\left(\theta_{2}-\theta_{1}\right)$