Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\tan x+\tan y=\frac{5}{6}$ and $\cot x+\cot y=5$, then $\tan (x+ y)$ is

KEAMKEAM 2020

Solution:

$\tan x+\tan y=\frac{5}{6}, \cot x+\cot 9=5$
$\frac{1}{\tan x}+\frac{1}{\tan y}=5$
$\frac{\tan x+\tan y}{\tan x \tan y}=5$
$\frac{5}{6 \times 5}=\tan x \tan y$
$\tan t \tan y=\frac{1}{6}$
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \cdot \tan y}$
$=\frac{\frac{5}{6}}{1-\frac{1}{6}}=1$