Thank you for reporting, we will resolve it shortly
Q.
If $\tan \theta=-\frac{4}{3},$ then $\sin \theta$ is :
AIEEEAIEEE 2002
Solution:
Key Idea : $\tan \theta$ is negative in second and fourth quadrants.
$\tan 0=\cdots \frac{4}{3}$
Here $p=4$ and $b=3$
$\therefore h=\sqrt{p^{2}+b^{2}}=\sqrt{16+9}=\sqrt{25}$
$\Rightarrow h=5$
$\therefore \sin \theta=\frac{p}{h}=\frac{4}{5}$
But $\tan \theta$ is negative which is possible only if $\theta$ lie in second and fourth quadrants.
$\therefore \sin \theta$ may be $\frac{4}{5}$ or $-\frac{4}{5}$.