Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $tan \left(\frac{\theta}{2}\right)=\frac{2}{3}$, then $sec\,\theta $ is equal to

KEAMKEAM 2013

Solution:

Given, $\tan \left(\frac{\theta}{2}\right)=\frac{2}{3}$
$\because\, \tan\, \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}=\frac{2 \times \frac{2}{3}}{1-\frac{4}{9}}$
$=\frac{4}{3} \times \frac{9}{5}$
$\Rightarrow \, \tan \theta=\frac{12}{5} $
$\therefore \, \tan ^{2}\, \theta =\frac{144}{25}$
$\Rightarrow \, \sec ^{2} \theta-1= \frac{144}{25}$
$ \Rightarrow \,\sec ^{2} \,\theta=\frac{169}{25} $
$ \therefore \, \sec \,\theta =\frac{13}{5}$