Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan (π/9), x and tan (5 π/18) are in A.P. and tan (π/9), y and tan (7 π/18) are also in A.P. then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\tan \frac{\pi}{9}, x$ and $\tan \frac{5 \pi}{18}$ are in A.P. and $\tan \frac{\pi}{9}, y$ and $\tan \frac{7 \pi}{18}$ are also in A.P. then
Trigonometric Functions
A
$2 x = y$
B
$x > 2$
C
$x = y$
D
None of these
Solution:
By the given conditions
$\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}=2 x ; \tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}=2 y $
$\Rightarrow 2 x =\tan 20^{\circ}+\tan 50^{\circ} $
$=\frac{\sin 20^{\circ}}{\cos 20^{\circ}}+\frac{\sin 50^{\circ}}{\cos 50^{\circ}}=\frac{\sin 20^{\circ} \cos 50^{\circ}+\cos 20^{\circ} \sin 50^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}} $
$=\frac{\sin 70^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}}=\frac{\cos 20^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}}$
$=\frac{1}{\cos 50^{\circ}}=\frac{1}{\sin 40^{\circ}}=\operatorname{cosec} 40^{\circ}$
and $2 y =\tan 20^{\circ} \tan 70^{\circ}$
$=\frac{\sin 20^{\circ}}{\cos 20^{\circ}}+\frac{\sin 70^{\circ}}{\cos 70^{\circ}}=\frac{\sin 90^{\circ}}{\cos 20^{\circ} \cos 70^{\circ}}$
$=\frac{1}{\cos 20^{\circ} \cos 70^{\circ}}=\frac{1}{\cos 20^{\circ} \sin 20^{\circ}}$
$=\frac{2}{2 \sin 20^{\circ} \cos 20^{\circ}}=\frac{2}{\sin 40^{\circ}}=2 \operatorname{cosec} 40^{\circ}$
$\therefore 2 y =2(2 x ) $ or $y =2 x$