Thank you for reporting, we will resolve it shortly
Q.
If $\tan \frac{\pi}{12}$ is one of the roots of the equation $2 x^2-b x+c=0,(b, c \in Q)$ then $(b+c)$ equals
Complex Numbers and Quadratic Equations
Solution:
$ \tan \frac{\pi}{12}=2-\sqrt{3}$, Conjugate $=2+\sqrt{3}$
$\Rightarrow$ Sum of roots $=\frac{b}{2}=2-\sqrt{3}+2+\sqrt{3}=4$
$\Rightarrow$ Product of roots $=\frac{ c }{2}=(2-\sqrt{3})(2+\sqrt{3})=1$
$\Rightarrow b = 8, c = 2$