Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \tan (\cot x)=\cot (\tan x) $ , then $ \sin 2x $ is equal to

Jharkhand CECEJharkhand CECE 2007

Solution:

Given, $ \tan (\cot x)=\cot (\tan x) $
$ =\tan \left( \frac{\pi }{2}-\tan x \right) $
$ \Rightarrow $ $ \cot x=n\pi +\left( \frac{\pi }{2}-\tan x \right) $
$ \Rightarrow $ $ \cot x+\tan x=n\pi +\frac{\pi }{2} $
$ \therefore $ $ \frac{1}{\sin x\cos x}=\frac{\pi }{2}(2n+1) $
$ \Rightarrow $ $ \sin 2x=\frac{4}{(2n+1)\pi } $