Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \tan (A+B)=p,\tan (A-B)=q, $ then the value of tan 2A is

JamiaJamia 2012

Solution:

Let $ A=\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{1/x}} $ Taking log on both sides, we get $ \log A=\underset{x\to \infty }{\mathop{\lim }}\,\frac{1}{x}\log x $ $ \Rightarrow $ $ \log A=0 $ $ \left( \because \underset{x\to \infty }{\mathop{\lim }}\,\frac{\log x}{{{x}^{m}}}=0\,\,\forall m>0 \right) $ $ \Rightarrow $ $ A={{e}^{0}}=1 $ $ \Rightarrow $ $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{1/x}}=1 $