Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\tan^2 \, \theta = 2 \, \tan^2 \, \phi + 1,$ then $\cos \, 2 \theta + \sin^2 \, \phi $ is equal to

Trigonometric Functions

Solution:

$\cos 2 \theta + \sin^{2} \phi = \frac{1-\tan^{2} \theta}{1+\tan^{2}\theta} + \sin^{2} \phi $
$ = \frac{1-\left(2 \tan^{2} \phi + 1 \right)}{1+\left(2\tan^{2} \phi + 1 \right)} + \sin^{2} \phi $
$ = \frac{-\tan^{2}\phi}{1+\tan^{2} \phi} + \sin^{2} \phi = - \frac{\tan^{2} \phi}{\sec^{2} \phi} + \sin^{2} \phi = 0 $