Thank you for reporting, we will resolve it shortly
Q.
If $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} A$, then $A$ is equal to
Inverse Trigonometric Functions
Solution:
Given that, $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} A$
$\Rightarrow \tan ^{-1}\left(\frac{ x - y }{1+ xy }\right)=\tan ^{-1} A $
$\therefore A =\frac{ x - y }{1+ xy }$