Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\tan^{-1} \,x +\tan^{-1} \,y = \frac{4\pi}{5}$, then $\cot^{-1}\, x + \cot^{-1} \,y$ is equal to

KCETKCET 2017Inverse Trigonometric Functions

Solution:

We have,
$ \tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5} $
$ \Rightarrow \frac{\pi}{2}-\cot ^{-1} x+\frac{\pi}{2}-\cot ^{-1} y=\frac{4 \pi}{5} $
$\Rightarrow \cot ^{-1} x+\cot ^{-1} y=\pi-\frac{4 \pi}{5}=\frac{\pi}{5} $