Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ {{({{\tan }^{-1}}x)}^{2}}+{{({{\cot }^{-1}}x)}^{2}}=\frac{5{{\pi }^{2}}}{8}, $ then $ x $ is equal to

KEAMKEAM 2008

Solution:

Given, $ {{({{\tan }^{-1}}x)}^{2}}+{{({{\cot }^{-1}}x)}^{2}}=\frac{5{{\pi }^{2}}}{8} $
$ \therefore $ $ {{({{\tan }^{-1}}x+{{\cot }^{-1}}x)}^{2}}-2{{\tan }^{-1}}x\left( \frac{\pi }{2}-{{\tan }^{-1}}x \right) $
$=\frac{5{{\pi }^{2}}}{8} $
$ \Rightarrow $ $ \frac{{{\pi }^{2}}}{4}-2\times \frac{\pi }{2}{{\tan }^{-1}}x+2{{({{\tan }^{-1}}x)}^{2}}=\frac{5{{\pi }^{2}}}{8} $
$ \Rightarrow $ $ 2{{({{\tan }^{-1}}x)}^{2}}-\pi {{\tan }^{-1}}x-\frac{3{{\pi }^{2}}}{8}=0 $
$ \Rightarrow $ $ {{\tan }^{-1}}x=-\frac{\pi }{4},\frac{3\pi }{4} $
Now, we take $ {{\tan }^{-1}}x=-\frac{\pi }{4}\Rightarrow x=-1 $