Q. If $\tan ^{-1}\left(-\alpha+\theta-\frac{\theta^3}{3 !}+\frac{\theta^5}{5 !}-\frac{\theta^7}{7 !}+\ldots . . \infty\right)+\cot ^{-1}\left(\alpha-1+\frac{\theta^2}{2 !}-\frac{\theta^4}{4 !}+\ldots \ldots\right)=\frac{\pi}{2}$ then maximum value of $\alpha$ equals to -
Inverse Trigonometric Functions
Solution: