Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\tan ^{-1} \frac{ a }{ x }+\tan ^{-1} \frac{ b }{ x }+\tan ^{-1} \frac{ c }{ x }+\tan ^{-1} \frac{ d }{ x }=\frac{\pi}{2}$, then $x^{4}-x^{2}\left(\sum a b\right)+a b c d=$

Inverse Trigonometric Functions

Solution:

$\tan ^{-1} \frac{ a }{ x }+\tan ^{-1} \frac{ b }{ x }+\tan ^{-1} \frac{ c }{ x }+\tan ^{-1} \frac{ d }{ x }=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1} \frac{ a }{ x }+\tan ^{-1} \frac{ b }{ x }=\frac{\pi}{2}-\left\{\tan ^{-1} \frac{ c }{ x }+\tan ^{-1} \frac{ d }{ x }\right\}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{a}{x}+\frac{b}{x}}{1-\frac{a b}{x^{2}}}\right)=\frac{\pi}{2}-\tan ^{-1}\left(\frac{\frac{c}{x}+\frac{d}{x}}{1-\frac{c d}{x^{2}}}\right)$
$\Rightarrow \tan ^{-1} \frac{(a+b) x}{x^{2}-a b}=\frac{\pi}{2}-\tan ^{-1} \frac{(c+d) x}{x^{2}-c d}$
$\Rightarrow \tan ^{-1} \frac{(a+b) x}{x^{2}-a b}=\cot ^{-1} \frac{(c+d) x}{x^{2}-c d}$
$\Rightarrow \tan ^{-1} \frac{(a+b) x}{x^{2}-a b}=\tan ^{-1} \frac{x^{2}-c d}{(c+d) x}$
$\Rightarrow \frac{(a+b) x}{x^{2}-a b}=\frac{x^{2}-c d}{(c+d) x}$
$\Rightarrow x^{4}-x^{2}\left(\sum a b\right)+a b c d=0$