Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sum to n terms of an A.P. is 5n2 + 6n and rth term is 401, then the value of r is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If sum to $n$ terms of an $A.P$. is $5n^2 + 6n$ and $r^{th}$ term is $401$, then the value of $r$ is
Sequences and Series
A
$40$
44%
B
$30$
23%
C
$20$
19%
D
$10$
14%
Solution:
$T_{n} = S_{n} -S_{n-1} $
i.e., $T_{n}= 5n^{2} + 6n -5\left(n-1\right)^{2} -6\left(n-1\right)$
$= 10n +1 $
$ \therefore T_{r} = 10r +1 = 401$
$\Rightarrow 10r= 400$
$\Rightarrow r= 40$