Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}, $ then $ \frac{\tan x}{\tan y} $ is equal to:

KEAMKEAM 2006

Solution:

$ \frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b} $ $ \Rightarrow $ $ \frac{\sin (x+y)+\sin (x-y)}{\sin (x+y)-\sin (x-y)}=\frac{(a+b)+(a-b)}{(a+b)-(a-b)} $ $ \Rightarrow $ $ \frac{2\sin x\cos y}{2\cos x\sin y}=\frac{2a}{2b} $ $ \Rightarrow $ $ \frac{\sin x\cos y}{\cos x\sin y}=\frac{a}{b} $ $ \Rightarrow $ $ \frac{\tan x}{\tan y}=\frac{a}{b} $