Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \sin x\,\cos \,y=\frac{1}{4} $ and $ 3\tan x=4\tan y, $ , then $ \sin (x-y) $ equals to

J & K CETJ & K CET 2012Trigonometric Functions

Solution:

Given, $ \sin x\cos y=\frac{1}{4} $ and $ 3\tan x=4\tan y $
$ \therefore $ $ \frac{3\,\sin \,x}{\cos x}=\frac{4\sin y}{\cos y} $
$ \Rightarrow $ $ 3\sin x\cos y=4\sin y\cos x $
$ \Rightarrow $ $ 3\times \frac{1}{4}=4\sin y\cos x $
$ \Rightarrow $ $ \sin y\cos x=\frac{3}{16} $
$ \therefore $ $ \sin (x-y)=\sin x\cos y-\cos x\sin y $
$ =\frac{1}{4}-\frac{3}{16} $ $ =\frac{1}{16} $