Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sin x=\frac{-2 \sqrt{6}}{5}$ and $x$ lies in III quadrant, then the value of $\cot x$ is

Trigonometric Functions

Solution:

$\because \cos ^2 x=\left(1-\sin ^2 x\right)=\left(1-\frac{24}{25}\right)=\frac{1}{25}$
( $\because \sin x$ and $\cos x$ are negative in III quadrant)
$\Rightarrow \cos x=-\frac{1}{5} $
$\therefore \cot x=\frac{\cos x}{\sin x}=\frac{-1 / 5}{-2 \sqrt{6} / 5}=\frac{1}{2 \sqrt{6}}$