Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sin \theta=\frac{12}{13}, \cos \theta=-\frac{5}{13}, 0<\theta<2 \pi$. Consider the following statements.
I. $\theta=\cos ^{-1}\left(-\frac{5}{13}\right)$
II. $\theta=\sin ^{-1}\left(\frac{12}{13}\right)$
III. $\theta=\pi-\sin ^{-1}\left(\frac{12}{13}\right)$
IV. $\theta=\tan ^{-1}\left(-\frac{12}{5}\right)$
V. $\theta=\pi-\tan ^{-1}\left(\frac{12}{5}\right)$
then which of the following statements are true?

Inverse Trigonometric Functions

Solution:

$\theta$ must line in the $2^{\text {nd }}$ quadrant