Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \sin B=3\sin (2A+B), $ then $ 2\tan A+\tan (A+B) $ =

J & K CETJ & K CET 2013Trigonometric Functions

Solution:

Given that, $ \sin B=3\sin (2A+B) $
$ \Rightarrow $ $ \frac{\sin \,\,B}{\sin \,(2A+B)}=\frac{3}{1} $
$ \Rightarrow $ $ \frac{\sin B+\sin (2A+B)}{\sin B-\sin (2A+B)}=\frac{3+1}{3-1} $
(use componendo-dividendo formula)
$ \Rightarrow $ $ -\frac{2\sin \,(A+B).cos(A)}{2\cos \,(A+B).\sin (A)}=\frac{4}{2} $
$ \Rightarrow $ $ \tan (A+B).\cot \,A=-2 $
$ \Rightarrow $ $ \tan \,(A+B)=-2\tan A $
$ \Rightarrow $ $ 2\tan A+\tan (A+B)=0 $