Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sin\,\theta$ and $\cos \theta $ are the roots of the equation $ax^2 - bx + c = 0$, then $a, b$ and $c$ satisfy the relation

WBJEEWBJEE 2011Complex Numbers and Quadratic Equations

Solution:

Since, $\sin \theta$ and $\cos \theta$ are the roots of the equation $a x^{2}-b x+c=0$
$\therefore \sin \theta+\cos \theta=\frac{b}{a}$ and $\sin \theta \cos \theta=\frac{c}{a}$
$\Rightarrow \left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta\right)=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1+2 \sin \theta \cos \theta=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1+2 \times \frac{c}{a}=\frac{b^{2}}{a^{2}}$
$\Rightarrow a^{2}-b^{2}+2 a c=0$