Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \sin 4A-\cos 2A=\cos 4A-\sin 2A, $ $ \left( 0
KEAMKEAM 2007

Solution:

Let $ \tan 4A=\sqrt{3}=\tan \frac{\pi }{3} $
$ \Rightarrow $ $ A=\frac{\pi }{12} $
$ \therefore $ $ sin\text{ }4A-cos\text{ }2A=sin\frac{\pi }{3}-cos\frac{\pi }{6} $
$=\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=0 $ and $ \cos 4A-\sin 2A=\sin \frac{\pi }{3}-\sin \frac{\pi }{6} $
$=\frac{1}{2}-\frac{1}{2}=0 $
$ \therefore $ $ sin\text{ }4A-cos\text{ }2A=cos\text{ }4A-sin\text{ }2A $
Hence, our assumption is true.
$ \therefore $ $ \tan 4A=\sqrt{3} $