Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin 4A- cos 2A= cos 4A- sin 2A, ( 0<A<(π /4) ) then the value of tan 4A is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ \sin 4A-\cos 2A=\cos 4A-\sin 2A, $ $ \left( 0
KEAM
KEAM 2007
A
$ 1 $
B
$ \frac{1}{\sqrt{3}} $
C
$ \sqrt{3} $
D
$ \frac{\sqrt{3}-1}{\sqrt{3}+1} $
E
$ \frac{\sqrt{3}+1}{\sqrt{3}-1} $
Solution:
Let $ \tan 4A=\sqrt{3}=\tan \frac{\pi }{3} $
$ \Rightarrow $ $ A=\frac{\pi }{12} $
$ \therefore $ $ sin\text{ }4A-cos\text{ }2A=sin\frac{\pi }{3}-cos\frac{\pi }{6} $
$=\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=0 $ and $ \cos 4A-\sin 2A=\sin \frac{\pi }{3}-\sin \frac{\pi }{6} $
$=\frac{1}{2}-\frac{1}{2}=0 $
$ \therefore $ $ sin\text{ }4A-cos\text{ }2A=cos\text{ }4A-sin\text{ }2A $
Hence, our assumption is true.
$ \therefore $ $ \tan 4A=\sqrt{3} $